Exercise 38

When air expands adiabatically (without gaining or losing heat), its pressure P and volume V are related by the equation $P V^{1.4}=C$, where C is a constant. Suppose that at a certain instant the volume is $400 \mathrm{~cm}^{3}$ and the pressure is 80 kPa and is decreasing at a rate of $10 \mathrm{kPa} / \mathrm{min}$. At what rate is the volume increasing at this instant?

Solution

Solve the given formula for the volume.

$$
V^{1.4}=\frac{C}{P}
$$

Take the derivative of both sides with respect to time by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}\left(V^{1.4}\right) & =\frac{d}{d t}\left(\frac{C}{P}\right) \\
1.4 V^{0.4} \cdot \frac{d V}{d t} & =-\frac{C}{P^{2}} \cdot \frac{d P}{d t} \\
& =-\left(\frac{C}{P}\right) \frac{1}{P} \frac{d P}{d t} \\
& =-\left(V^{1.4}\right) \frac{1}{P} \frac{d P}{d t}
\end{aligned}
$$

Solve for $d V / d t$.

$$
\frac{d V}{d t}=-\frac{V}{1.4 P} \frac{d P}{d t}
$$

Therefore, at the instant that the volume is $400 \mathrm{~cm}^{3}$, the pressure is 80 kPa , and the pressure is decreasing at a rate of $10 \mathrm{kPa} / \mathrm{min}$, the rate of change of the volume is

$$
\left.\frac{d V}{d t}\right|_{\substack{V=400 \\ P=80}}=-\frac{400}{1.4(80)}(-10)=\frac{250}{7} \frac{\mathrm{~cm}^{3}}{\min } \approx 35.7143 \frac{\mathrm{~cm}^{3}}{\min }
$$

